# COMPENSATION OF A TRILATERATION NETWORK AND VERIFICATION OF ERRORS RANDOMNESS

Andreea STOICA

# Scientific coordinator: Daniela IORDAN, Lecturer

University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Mărăști Blvd, District 1, 011464, Bucharest, Romania, Phone: +4072.636.84.82, Email: andreeanstoica@yahoo.com

Corresponding author email: andreeanstoica@yahoo.com

# Abstract

This paper presents a method of determining the coordinates of new points based on the measured distances (trilateration) using the indirect measurement method. This method is treated theoretically and numerically using Gauss-Markov method, the matrix treating. Another contribution consists of the Young Test to verify the random errors.

Key words: compensation, measurements, network, trilateration, Young Test.

# **INTRODUCTION**

Planimetric support networks are formed of points, which joined together with imaginary lines form a series of adjacent triangles. The trilateration participates in creating the geodetic network, all the points located on the surface of the Earth, for which the coordinates are known in a reference system. The state geodetic network, created separately by triangulation and levelling, is the main support network for all topo-geodetic and photogrammetric work. It is divided in orders: I, II, III and IV. The state triangulation network was completed with a thickening network of order V. (Moldoveanu, 2000)

There were defined several classification criteria for networks, but by the type of network measurements exists:

- triangulation networks;
- trilateration networks;
- networks formed with global positioning stations;
- mixed networks.

Trilateration is the process of measuring distances (edges) in planimetric support

networks in order to determine the coordinates of the points that form these networks.

As electronic distance measuring equipment provides great accuracy and as linear measurement is much easier than the angular measurement, trilateration can be considered as one of the most economic methods to create, rehabilitate and thicken the planimetric support networks.

To execute a trilateration every point of the network has to be accessible because at each measured edge on one end will be installed the instrument and on the other the reflector. It is generally stationed in all the points and the edges are measured in both directions. (Popia, 2005)

# MATERIALS AND METHODS

On a set of distance measurements effectuated with the indirect method in a network formed of 2 points of known rectangular coordinates (X, Y) and 5 new points, the coordinates for the new points will be determined (Figure 1).

The distances were measured in both directions in order to benefit of a rigorous compensation.

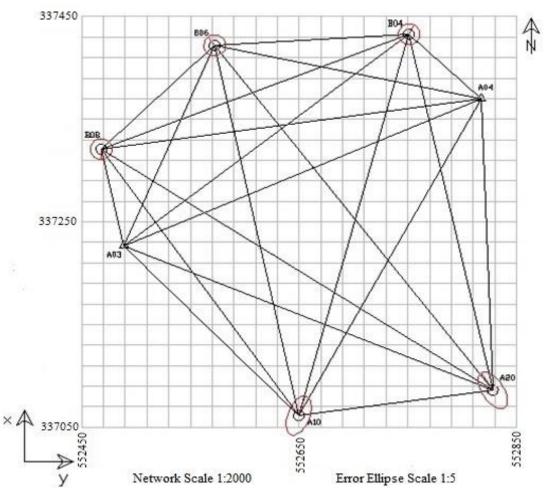



Figure 1. The trilateration network

In order to compensate the network the Gauss-Markov method is applied, which involves the matrix treating.

# **RESULTS AND DISCUSSIONS**

Compensating a trilateration network involves going through based stages, beginning by writing the correction equations and calculating the weights.

The weights can be calculated with the relation:

 $p_i = \frac{1}{(s'_D)^2}$  sau  $p_i = \frac{D_{min}}{D_i}$ , where  $s'_D$  is the

average error of the series of observations made on that edge and  $D_{min}$  is the length of the smallest edge measured in the network, which receives the value 1 as its weight.

By adding adjustments to the provisional values (Table 1) there will be determined the most probable values of the parameters. (Moldoveanu, 2000)

Table 1. Provisional coordinates of the new points points

| Point | X° [m]     | Y <sup>o</sup> [m] | ⊖°[g c cc] | Point | Xº [m]                                                                                                         | Y° [m]     |
|-------|------------|--------------------|------------|-------|----------------------------------------------------------------------------------------------------------------|------------|
| A03   | 337226.600 | 552488.783         | 386.1486   |       |                                                                                                                |            |
| A04   | 337370.105 | 552817.167         | 291.0860   | B08   | 337320.884                                                                                                     | 552467,939 |
| B08   | 337320.884 | 552467.939         |            | 000   | 337320.004                                                                                                     | 332407.333 |
| 000   | 337320.004 | 552467.939         |            |       | ·                                                                                                              |            |
| A03   | 337226.600 | 552488.783         | 25.7477    |       |                                                                                                                |            |
| A04   | 337370.105 | 552817.167         | 313.2653   | B06   | 337421,866                                                                                                     | 552572.365 |
| B06   | 337421.866 | 552572.365         |            | 000   | 001421.000                                                                                                     | 552572.505 |
| DUO   | 337421.000 | 552572.365         |            |       | 2                                                                                                              | -          |
| A03   | 337226.600 | 552488.783         | 57.5788    |       | 337432.742                                                                                                     |            |
| A04   | 337370.105 | 552817.167         | 348.2269   | B04   |                                                                                                                | 552750.940 |
| B04   | 337432.742 | 552750.940         |            | 004   | JJ14J2.14Z                                                                                                     | 552750.540 |
| D04   | JJ14J2.142 | 552750.940         |            |       | 337432.742                                                                                                     |            |
| A03   | 337226.600 | 552488.783         | 124.9872   |       |                                                                                                                |            |
| A04   | 337370.105 | 552817.167         | 197.5676   | A20   | 337086 163                                                                                                     | 552828.021 |
| A20   | 337086,163 | 552828.021         |            | A20   | 337086.163                                                                                                     | 552020.021 |
| AZU   | 337000.103 | 552828.021         |            |       |                                                                                                                | -          |
| A03   | 337226.600 | 552488.783         | 150.8739   |       | and a second |            |
| A04   | 337370.105 | 552817.167         | 231.6514   | A10   | 337061.307                                                                                                     | 552649.599 |
| A10   | 337061.307 | 552649.599         |            | AIU   | 331001.301                                                                                                     | 552649.599 |
| AIU   | 331001.301 | 552649.599         |            |       |                                                                                                                |            |

The corrections are called coordinates increases and are denoted dX, respectively Dy.

| $X_i = X^{o_i} + dX_i$ | $\mathbf{V} - \mathbf{V}^0$           | $d\mathbf{V}$ |
|------------------------|---------------------------------------|---------------|
|                        | $X_j = X^o_j$                         |               |
| $Y_i = Y_i^o + dY_i$   | $\mathbf{Y}_{j} = \mathbf{Y}^{o}_{j}$ | $+ dY_j$      |

This will get:

 $\begin{aligned} \mathbf{v}_{ij}^{\mathrm{D}} &= \cos\theta_{ij}^{0} d\mathbf{X}_{j} + \sin\theta_{ij}^{0} d\mathbf{Y} - \cos\theta_{ij}^{0} d\mathbf{X}_{i} \\ &- \sin\theta_{ij}^{0} d\mathbf{Y}_{i} + (\mathbf{D}_{ij}^{0} - \mathbf{D}_{ij}^{*}) \end{aligned}$ 

Where  $\theta_{ij}^0$  and  $D_{ij}^0$  are calculated with the provisional coordinates of the points and  $D_{ij}^*$  is the measured distance.

The correction equation for the measured distance between two new points "i" and "j" is calculated using the formula:

$$\begin{split} v^{\rm D}_{ij} &= A_{ij} dX_j + Bij dY - Aij dX_i - Bij dY_i + l^{\rm D}_{ij} \\ \text{where } l^{\rm D}_{ij} &= D^{\rm 0}_{ij} - D^{*}_{ij}. \end{split}$$

The form for the correction equation for the measured distance between an old point "i" and a new point "j":

$$v_{ij}^{\scriptscriptstyle D}{=}A_{ij}dX_j{+}BijdY_j{+}l_{ij}^{\scriptscriptstyle D}$$

The form for the correction equation for the measured distance between a new point "i" and an old point "j":

 $v_{ij}^{\scriptscriptstyle D} = -AijdX_i - BijdY_i + l_{ij}^{\scriptscriptstyle D}$ 

Between two old points distance measurements are not performed.

To compensate the network it's necesary to solve the normal system of equations. Based upon the calculated coefficients for the unknown elements of the linear system of corrections will be issued the coefficients matrix, the matrix A. Starting from the general form, the matrix form, of the corection equations: V = Ax+1. The formed system is an indeterminate compatible system, with the following notations:

V – the measurement corrections vector;

A – the coeffcients of the correction equations matrix;

x – the coordinate increases vector (unknowns vector)

1 -the free terms vector .

Applying the least square method  $V^T p V \rightarrow min$ there will be determined formulas for the coordinate increases vector and for the corrections vector. Using the N matrix, the normal matrix, one can determine the unknowns vector.

$$N = ATPA$$

$$ATPAx + ATPl = 0$$

$$x = -N-1ATPl$$

$$V = Ax + l$$

The normal system is compatible determined, so the values of the unknowns can be uniquely determined. (Moldoveanu, 2000) The results of the matrix calculus is presented below:



The compensated values are determined by adding the systems solutions to the provisional values (Table 2).

After determining the compensated coordinates, the compensation of the network can be finished (Table 3).

Table 2. The compensated coordinates

| Point | X° [m]     | Y <sup>o</sup> [m] | dx [m] | dy [m] | X [m]      | Y [m]      |   |
|-------|------------|--------------------|--------|--------|------------|------------|---|
| B08   | 337320.884 | 552467.939         | 0.001  | 0.002  | 337320.885 | 552467.941 | ł |
| B06   | 337421.866 | 552572.365         | 0.001  | 0.000  | 337421.866 | 552572.365 | ( |
| B04   | 337432.742 | 552750.940         | 0.002  | 0.000  | 337432.744 | 552750.940 | ł |
| A20   | 337086.163 | 552828.021         | 0.004  | 0.000  | 337086.167 | 552828.022 | ľ |
| A10   | 337061.307 | 552649.599         | 0.002  | 0.003  | 337061.309 | 552649.602 |   |

Any processing of observations in a geodetic network ends with the calculus of precision assessment indicators.

The standard deviation of the unit weight:

$$\mathbf{s}_0 = \sqrt{\frac{\mathbf{V}^{\mathrm{T}} \cdot \mathbf{P} \cdot \mathbf{V}}{m-n}}$$

where m is the number of measurements and n is the number of unknowns.

The standard deviation of a compensated measurement:

$$s_{mij} = \frac{s_0}{\sqrt{p_i}}$$

The standard deviation of the unknowns:

$$\begin{split} s_{x_i} &= s_0 \cdot \sqrt{q_{x_i x_i}} \\ s_{y_i} &= s_0 \cdot \sqrt{q_{y_i y_i}} \end{split}$$

The standard deviation to determine the position of the point:

$$s_{p_i} = \sqrt{s_{x_i}^2 + s_{y_i}^2}$$

The standard deviation on the network:

$$s_t = \frac{\sum s_{p_i}}{n}$$

Where n is the number of new points. (Voineagu, 2007)

The values obtained for the standard deviations are:

 $s_0 = 0.001 \text{ m}$ 

| $s_{xB08} = 0.001 \text{ m}$ | $s_{yB08} = 0.002 \text{ m}$ |
|------------------------------|------------------------------|
| $s_{xB06} = 0.001 \text{ m}$ | $s_{yB06} = 0.001 \text{ m}$ |
| $s_{xB04} = 0.001 \text{ m}$ | $s_{yB04} = 0.001 \text{ m}$ |
| $s_{xA20} = 0.002 \text{ m}$ | $s_{yA20} = 0.002 \text{ m}$ |
| $s_{xA10} = 0.002 \text{ m}$ | $s_{yA10} = 0.001 \text{ m}$ |

$$s_{pB08} = 0.002 \text{ m}$$
  
 $s_{pB06} = 0.002 \text{ m}$   
 $s_{pB04} = 0.002 \text{ m}$   
 $s_{pA20} = 0.002 \text{ m}$   
 $s_{pA10} = 0.002 \text{ m}$   
 $s_{t} = 0.002 \text{ m}$ 

The planimetric point position depends on two parameters, X and Y. The confidence domain of the planimetric position of a point is given by the invariant called error ellipse (Figure 2).

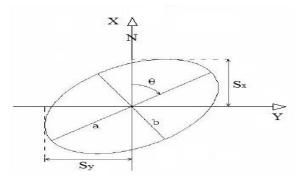



Figure 2. Error ellipse

After compensating the point  $P_j$ , the coordinates  $(X_j, Y_j)$  were obtained and the twodimensional block:

$$\mathbf{Q}_{jj} = \begin{pmatrix} \mathbf{q}_{x_{j}x_{j}} & \mathbf{q}_{x_{j}y_{j}} \\ \mathbf{q}_{y_{j}x_{j}} & \mathbf{q}_{y_{j}y_{j}} \end{pmatrix}$$

This block is extracted from the general matrix of cofactors:  $Q_{xx} = N^{-1}$ .

The error ellipse elements (Table 4) are:

- the semi-major axis:  $a = S_0 \sqrt{\lambda_1}$
- the semi-minor axis:  $b = S_0 \sqrt{\lambda_2}$
- the angle of orientation (the orientation of the semi-major axis to the axis X):

$$\Theta = \frac{1}{2} \arctan \frac{2q_{xy}}{q_{xx} - q_{yy}}$$

where: 
$$\lambda_{1,2} = \frac{q_{xx} + q_{yy}}{2} \pm \frac{1}{2} \sqrt{(q_{xx} - q_{yy})^2 + 4q_{xy}^2}$$
.

Table 4. The error ellipse elements

| Point | a [m] | b [m] | Θ [g]    |
|-------|-------|-------|----------|
| B08   | 0.001 | 0.001 | 199.6017 |
| B06   | 0.001 | 0.001 | 359.7055 |
| B04   | 0.001 | 0.001 | 33.9736  |
| A20   | 0.002 | 0.001 | 365.2458 |
| A10   | 0.002 | 0.001 | 21.5545  |

# Table 3. The compensation of the network

| -       | 2                          |                   | 30      |                       | 8                     |                       | 8         | Unknowns | us.         | õ           |             |             |           |                     |       |        |        | Cor               | Control           |
|---------|----------------------------|-------------------|---------|-----------------------|-----------------------|-----------------------|-----------|----------|-------------|-------------|-------------|-------------|-----------|---------------------|-------|--------|--------|-------------------|-------------------|
| PS PV   | V 0°[g c cc]               | ] D* [m]          | D° [m]  | dx <sub>B08</sub> [m] | dy <sub>B08</sub> [m] | dx <sub>B06</sub> [m] | dyBoe [m] | 7        | dyB04 [m] c | dXA20 [m] 0 | dXA20 [m] ( | dXA10 [m] 0 | dyA10 [m] | l <sub>ij</sub> [m] | ц,    | dD [m] | v [m]  | D [m]             | D [m]             |
|         | _                          | - 3               |         | 0.001                 | 0.002                 | 0.001                 | 0.000     | 0.002    | 0.000       | 0.004       | 0.000       | 0.002       | 0.003     |                     |       |        |        | L'corected [!!!]  | Ucalculated [!!!] |
| B08     | 10                         | - 4               | 96.560  | 0.9764                | -0.2159               | 0                     | 0         | 0        | 0           | 0           | 0           | 0           | 0         | -0.002              | 0.944 | 0.001  | -0.001 | 96.561            | 96.561            |
| B06     | 06 25.7477                 | 212.402           | 212.402 | 0                     | 0                     | 0.9193                | 0.3935    | 0        | 0           | 0           | 0           | 0           | 0         | 0.000               | 0.429 | 0.001  | 0.000  | 212.403           | 212.403           |
| B04     | 1                          | 333.503           | 333.498 | 0                     | 0                     | 0                     | 0         | 0.6181   | 0.7861      | 0           | 0           | 0           | 0         | -0.005              | 0.273 | 0.001  | -0.005 | 333.499           | 333.499           |
| A03 A04 | 14 73.7717                 | 358.371           | 358.371 | 0                     | 0                     | 0                     | 0         | 0        | 0           | 0           | 0           | 0           | 0         | 0.000               | 0.254 | 0.000  | -0.001 | 358.371           | 358.371           |
| A20     | 1                          | 3                 | 367.158 | 0                     | 0                     | 0                     | 0         | 0        | 0           | -0.3825     | 0.9240      | 0           | 0         | -0.002              | 0.248 | -0.001 | -0.004 | 367.157           | 367.157           |
| A10     | 150.8739                   | 230.619           | 230.616 | 0                     | 0                     | 0                     | 0         | 0        |             | 12 1        | 0           | -0.7167     | 0.6973    | -0.003              | 0.395 | 0.001  | -0.003 | 230.617           | 230.617           |
|         |                            |                   |         |                       |                       |                       |           |          |             |             |             |             |           |                     |       |        |        |                   |                   |
| AO      | 13 186.1486                |                   | 96.560  | 0.9764                | -0.2159               | 0                     | 0         | 0        | 0           | 0           | 0           | 0           | 0         | -0.001              | 0.944 | 0.001  | 0.000  | 96.561            | 96.561            |
| B06     |                            | e<br>Ber          | 145.266 | -0.6952               | -0.7189               | 0.6952                | 0.7189    | 0        | 0           | 0           | 0           | 0           | 0         | 0.000               | 0.628 | -0.002 | -0.002 | 145.264           | 145.264           |
| BO      | 16.0368                    | -                 | 304.305 | -0.3676               | -0.9300               | 0                     | 0         | 0.3676   | 0.9300      | 0           | 0           | 0           | 0         | 0.000               | 0.300 | -0.002 | -0.002 | 304.304           | 304.304           |
| B08 A04 | 2                          | 1                 | 352.680 | -0.1396               | -0.9902               | 0                     | 0         | 0        | 0           | 0           | 0           | 0           | 0         | 0.002               | 0.258 | -0.002 | -0.001 | 352.678           | 352.678           |
| A20     | 20 136.7760                | 429.829           | 429.829 | 0.5461                | -0.8377               | 0                     | 0         | 0        | 0           | -0.5461     | 0.8377      | 0           | 0         | 0.000               | 0.212 | -0.003 | -0.004 | 429.826           | 429.826           |
| A10     |                            | 5.1               | 316.829 | 0.8193                | -0.5734               | 0                     | 0         | 0        | 0           | 0           | 0           | -0.8193     | 0.5734    | 0.002               | 0.288 | 0.000  | 0.001  | 316.829           | 316.829           |
|         | 2                          |                   |         |                       |                       |                       |           |          |             |             |             |             |           |                     |       |        |        |                   |                   |
| AO      | 33 225.7477                | 212.402           | 212.402 | 0                     | 0                     | 0.9193                | 0.3935    | 0        | 0           | 0           | 0           | 0           | 0         | 0.000               | 0.429 | 0.001  | 0.000  | 212.403           | 212.403           |
| B08     | 08 251.0671                | 145.264           | 145.266 | -0.6952               | -0.7189               | 0.6952                | 0.7189    | 0        | 0           | 0           | 0           | 0           | 0         | 0.002               | 0.628 | -0.002 | 0.000  | 145.264           | 145.264           |
| B04     | 04 96.1273                 | 178.906           | 178.906 | 0                     | 0                     | -0.0608               | -0.9982   | 0.0608   | 0.9982      | 0           | 0           | 0           | 0         | 0.000               | 0.510 | 0.000  | -0.001 | 178.906           | 178.906           |
| B06 A04 |                            | 220.000           | 250.215 | 0                     | 0                     | 0.2069                | -0.9784   | 0        | 0           | _           | 0           | 0           | 0         | 0.001               | 0.364 | 0.000  | 0.000  | 250.215           | 250.215           |
| A20     | 2                          |                   | 421.968 | 0                     | 0                     | 0.7956                | -0.6059   | 0        | 0           | -0.7956     | 0.6059      | 0           | 0         | 0.001               | 0.216 | -0.002 | -0.003 | 421.965           | 421.965           |
| A10     | 10 186.5661                | 368.738           | 368.738 | 0                     | 0                     | 0.9778                | -0.2095   | 0        | 0           | 0           | 0           | -0.9778     | 0.2095    | 0.000               | 0.247 | -0.001 | -0.001 | 368.738           | 368.738           |
|         |                            |                   |         |                       |                       |                       | -         |          |             |             |             |             |           |                     |       |        |        |                   |                   |
| A03     |                            | -                 | 333.498 | 0                     | 0                     | 0                     | 0         | 0.6181   | 0.7861      | 0           | 0           | 0           | 0         | 0.000               | 0.273 | 0.001  | 0.000  | 333.499           | 333.499           |
| B08     |                            | -                 | 304.305 | -0.3676               | -0.9300               | 0                     | 0         | 0.3676   | 0.9300      | 0           | 0           | 0           | 0         | 0.001               | 0.300 | -0.002 | -0.001 | 304.304           | 304.304           |
| _       |                            |                   | 178.906 | 0                     | 0                     | -0.0608               | -0.9982   | 0.0608   | 0.9982      | 0           | 0           | 0 0         | 0         | 0.000               | 0.510 | 0.000  | -0.001 | 178.906           | 178.906           |
| B04 A04 | 04 148.2269<br>00 186 0670 | 91.156<br>366 046 | 366.048 |                       | 0 0                   | 0 0                   | 0 0       | 0.0761   | -0.7265     | 0 07£1      | 0 0174      |             |           | 0.000               | 1.000 | 0.00   | 0.002  | 91.158<br>266 046 | 91.158<br>366 046 |
| A10     | 1                          | - 23              | 386 012 |                       | 0 0                   |                       | 0         | 1010.0   |             | 1010-0      | 0           | -D QEAT     | 0 2632    | 0000                | 0 237 | -0.001 | 0.000  | 385 011           | 386.011           |
| č       |                            | 3.                | 710.000 | >                     |                       | >                     | >         | 1+00-0   | 70770       | >           | -           | 1+00-0-     | 707.0-    | 0.00                | 107.0 | 00.0   | 200.0- | 110.000           | 110,000           |
| A03     | 33 273 7717                | 358 371           | 358 371 | 0                     | 0                     | 0                     | 0         | 0        | 0           | 0           | 0           | 0           | 0         | 0 000               | 0 254 | 0 000  | -0.001 | 358 371           | 358 371           |
| B08     |                            | -                 | 352.680 | 0.2069                | -0.9784               | 0                     | 0         | 0        | 0           | 0           | 0           | 0           | 0         | 0.000               | 0.258 | -0.002 | -0.003 | 352.678           | 352.678           |
| B06     | 1.8                        |                   | 250.215 | 0                     | 0                     | 0.2069                | -0.9784   | 0        | 0           | 0           | 0           | 0           | 0         | -0.001              | 0.364 | 0.000  | -0.002 | 250.215           | 250.215           |
| A04 B04 |                            |                   | 91.156  | 0                     | 0                     | 0                     | 0         | 0.6871   | -0.7265     | 0           | 0           | 0           | 0         | -0.004              | 1.000 | 0.001  | -0.002 | 91.158            | 91.158            |
| A20     |                            |                   | 284.149 | 0                     | 0                     | 0                     | 0         | 0        |             | -0.9993     | 0.0382      | 3           | 0         | 0.000               | 0.321 | -0.004 | -0.004 | 284.146           | 284.146           |
| A10     | 10 231.6514                | 351.334           | 351.333 | 0                     | 0                     | 0                     | 0         | 0        | 0           | 0           | 0           | -0.8789     | -0.4769   | -0.001              | 0.259 | -0.003 | -0.004 | 351.330           | 351.330           |
| A02     | 12 20/ 0270                | 367 168           | 367 168 | -                     | -                     | c                     | c         | -        | -           | 0 307E      | 00000       | -           | -         | 0000                | SVC U | 0.001  | 0.000  | 367 467           | 367 467           |
| BUR     | -                          | 10                | 001 000 | 0 EAE1                | _0 8377               |                       | 0         | 0        | 12          |             | 0.8377      |             | 0         | 0.000               | 0.210 | -0.003 | -0.00A | 101.100           | 101 . 10C         |
| BOG     | -                          | -                 | 421 968 | 0                     | 0                     | 0 7956                | -0 6059   | 0        | 4           | 1           | 0.6059      | 0           | 0         | -0 002              | 0.216 | -0 002 | -0.006 | 421 965           | 421 965           |
| A20 B04 | 1                          | -                 | 355.048 | 0                     | 0                     | 0                     | 0         | 0.9761   | 11          |             | 0.2171      | 0           | 0         | 0.001               | 0.257 | -0.002 | -0.002 | 355.046           | 355.046           |
|         | -                          |                   | 284.149 | 0                     | 0                     | 0                     | 0         | 0        |             |             | 0.0382      | 0           | 0         | 0.005               | 0.321 | -0.004 | 0.001  | 284.146           | 284.146           |
| A10     | 1                          | 1 22              | 180.145 | 0                     | 0                     | 0                     | 0         | 0        |             |             | 0.9904      | 80          | -0.9904   | 0.000               | 0.506 | -0.002 | -0.003 | 180.143           | 180.143           |
|         |                            |                   |         |                       |                       |                       |           |          |             |             |             |             |           |                     |       |        |        |                   |                   |
| A03     | 350.8739                   | 230.616           | 230.616 | 0                     | 0                     | 0                     | 0         | 0        | 0           | 0           | 0           | -0.7167     | 0.6973    | 0.000               | 0.395 | 0.001  | 0.000  | 230.617           | 230.617           |
| B08     | 361.1271                   | 316.829           | 316.829 | 0.8193                | -0.5734               | 0                     | 0         | 0        | 0           | 0           | 0           | -0.8193     | 0.5734    | 0.000               | 0.288 | 0.000  | -0.001 | 316.829           | 316.829           |
| B06     | 386.5661                   | 368.741           | 368.738 | 0                     | 0                     | 0.9778                | -0.2095   | 0        | 0           | 0           | 0           | -0.9778     | 0.2095    | -0.003              | 0.247 | -0.001 | -0.004 | 368.738           | 368.738           |
| A10 B04 |                            |                   | 385.012 | 0                     | 0                     | 0                     | 0         | 0.9647   | 0.2632      | 0           | 0.00        |             | -0.2632   | -0.004              | 0.237 | -0.001 | -0.006 | 385.011           | 385.011           |
| A04     | 31.6514                    | 351.330           | 351.333 | 0                     | 0                     | 0                     | 0         | 0        | 0           |             |             | -0.8789     | -0.4769   | 0.003               | 0.259 | -0.003 | 0.000  | 351.330           | 351.330           |
| A20     | - 2                        | -                 | 180.145 | 0                     | 0                     | 0                     | 0         | 0        | 0           | 0.1380      | 0.9904      | - 2         | -0.9904   | 0.005               | 0.506 | -0.002 | 0.002  | 180.143           | 180.143           |
|         |                            |                   |         |                       |                       |                       |           |          |             |             |             |             |           |                     |       |        |        |                   |                   |

The error ellipse is used in determining the confidence domain of the planimetric position of the points coordinates, determining the directions after which the error has extremely high or low values, determining the error in any direction, optimizing the geodetic network. (Nistor, 1998)

The compensation of geodetic measurements and the statistical analysis of the results is based on the randomness of the measurement errors. R. L. Young (1941) suggested the next statistics (Table 5), used to detect the nonrandom feature:

$$\delta^{2} = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_{i+1} - x_{i})^{2}$$

The statistics  $\delta^2$  is called the square average of successive differences.

The next statistics will be used to test the non-random feature:

 $\theta = \frac{\delta^2}{S^2}$  (Von Neuman, 1941)

The statistics compares two estimators of the theoretic dispersion in the distribution  $N(\mu, \sigma^2)$ . The critical values of the statistics ( $\theta_{critic}$ ) were tabled by Hart (1942). In that table are calculated lower critical values ( $\theta_{c.i.} = \theta_{n,a}$ ) and upper critical values ( $\theta_{c.s.} = \theta_{n,a}$ ) for the risk coefficient  $\alpha = 0.05$  and  $\alpha = 0.01$ .

The decision to accept a null hypothesis, that the selection has a non-random feature, is taken if:  $\theta_{c.i.} \leq \theta_{calc.} \leq \theta_{c.s.}$ 

If the selection volume is n > 25, then the statistics  $\theta' = 1 - \frac{\theta}{2}$  is normally distributed  $N\left(0, \frac{n-2}{n^2-1}\right)$ . In this case the statistics is

calculated with the formula:  $\theta' = \theta_{calc.}$ 

$$=\theta_{\text{calc.}}=\frac{\delta^2}{2\mathbf{S}^2}.$$

It is compared with the critical value:

$$\theta_{\text{critic}} = \theta_{n,\alpha} = 1 - k_{\alpha} \sqrt{\frac{n-2}{n^2-1}}$$

If  $\theta_{calc.} \ge \theta_{critic}$ , then the hypothesis of a random feature is rejected. Otherwise it is accepted the alternative hypothesis that the values have a random feature. (Laurenzi, 2010)

The values that determine the random feature are:

| $v_{\rm M}$ = -0.0016 m     | $\theta = 1.8324 \text{ g}$       |
|-----------------------------|-----------------------------------|
| $S^2 = 0.000001 m^2$        | $\theta' = 0.0838 \text{ g}$      |
| $\delta^2 = 0.000005 \ m^2$ | $\theta_{\text{critic}} = 0.7464$ |

### Table 5. The Young Test

| No. | v [m]   | VM - V [m] | $(v_{M} - v)^{2} [m^{2}]$ | v <sub>i+1</sub> - v <sub>i</sub> [m] | $(v_{i+1} - v_i)^2 [m^2]$ |
|-----|---------|------------|---------------------------|---------------------------------------|---------------------------|
| 1   | -0.0014 | -0.0002    | 0.000000                  | 0.0017                                | 0.0000028                 |
| 2   | 0.0002  | -0.0019    | 0.000004                  | -0.0051                               | 0.0000257                 |
| 3   | -0.0048 | 0.0032     | 0.000010                  | 0.0012                                | 0.0000014                 |
| 4   | -0.0037 | 0.0020     | 0.000004                  | 0.0008                                | 0.000006                  |
| 5   | -0.0029 | 0.0013     | 0.000002                  | 0.0025                                | 0.0000062                 |
| 6   | -0.0004 | -0.0012    | 0.000001                  | -0.0017                               | 0.0000030                 |
| 7   | -0.0022 | 0.0005     | 0.000000                  | 0.0003                                | 0.0000001                 |
| 8   | -0.0019 | 0.0003     | 0.000000                  | 0.0007                                | 0.0000005                 |
| 9   | -0.0012 | -0.0005    | 0.000000                  | -0.0025                               | 0.0000064                 |
| 10  | -0.0037 | 0.0021     | 0.000004                  | 0.0047                                | 0.0000223                 |
| 11  | 0.0010  | -0.0027    | 0.000007                  | -0.0008                               | 0.0000006                 |
| 12  | 0.0002  | -0.0019    | 0.000004                  | -0.0004                               | 0.0000002                 |
| 13  | -0.0002 | -0.0015    | 0.000002                  | -0.0006                               | 0.0000003                 |
| 14  | -0.0007 | -0.0009    | 0.000001                  | 0.0007                                | 0.0000005                 |
| 15  | 0.0000  | -0.0016    | 0.000003                  | -0.0027                               | 0.0000072                 |
| 16  | -0.0027 | 0.0010     | 0.000001                  | 0.0014                                | 0.0000021                 |
| 17  | -0.0012 | -0.0004    | 0.000000                  | 0.0014                                | 0.0000020                 |
| 18  | 0.0002  | -0.0018    | 0.000003                  | -0.0011                               | 0.0000011                 |
| 19  | -0.0009 | -0.0007    | 0.000001                  | 0.0002                                | 0.0000000                 |
| 20  | -0.0007 | -0.0009    | 0.000001                  | 0.0023                                | 0.0000053                 |
| 21  | 0.0016  | -0.0032    | 0.000010                  | -0.0014                               | 0.0000020                 |
| 22  | 0.0002  | -0.0018    | 0.000003                  | -0.0019                               | 0.0000038                 |
| 23  | -0.0018 | 0.0001     | 0.000000                  | -0.0010                               | 0.0000010                 |
| 24  | -0.0028 | 0.0011     | 0.000001                  | 0.0008                                | 0.0000006                 |
| 25  | -0.0020 | 0.0004     | 0.000000                  | -0.0004                               | 0.0000002                 |
| 26  | -0.0024 | 0.0008     | 0.000001                  | -0.0014                               | 0.0000021                 |
| 27  | -0.0039 | 0.0022     | 0.000005                  | -0.0005                               | 0.0000002                 |
| 28  | -0.0043 | 0.0027     | 0.000007                  | 0.0027                                | 0.0000071                 |
| 29  | -0.0017 | 0.0000     | 0.000000                  | -0.0020                               | 0.0000041                 |
| 30  | -0.0037 | 0.0021     | 0.000004                  | -0.0020                               | 0.0000039                 |
| 31  | -0.0057 | 0.0040     | 0.000016                  | 0.0039                                | 0.0000149                 |
| 32  | -0.0018 | 0.0002     | 0.000000                  | 0.0030                                | 0.0000088                 |
| 33  | 0.0011  | -0.0028    | 0.000008                  | -0.0038                               | 0.0000148                 |
| 34  | -0.0027 | 0.0011     | 0.000001                  | 0.0028                                | 0.0000078                 |
| 35  | 0.0001  | -0.0017    | 0.000003                  | -0.0011                               | 0.0000011                 |
| 36  | -0.0010 | -0.0007    | 0.000000                  | -0.0033                               | 0.0000106                 |
| 37  | -0.0042 | 0.0026     | 0.000007                  | -0.0015                               | 0.0000024                 |
| 38  | -0.0058 | 0.0041     | 0.000017                  | 0.0054                                | 0.0000296                 |
| 39  | -0.0003 | -0.0013    | 0.000002                  | 0.0026                                | 0.0000069                 |
| 40  | 0.0023  | -0.0039    | 0.000016                  |                                       |                           |
| Σ   | -0.0658 | 0.0000     | 0.000000                  | 0.0037                                | 0.0002099                 |

## CONCLUSIONS

By checking the random nature of the experimental data there can be found their systematic errors. Knowing that only random errors carry the characteristics of random variables, the presence of systematic errors has an undesirable influence on the studied distribution.

### REFERENCES

Ghilani Ch. D., 2010, Spatial data analysis: Adjustment computations, Fifth Edition, John Wiley & Sons Publishing House

Iordan D., Note de curs – Compensarea masuratorilor si statistica

Laurenzi W., 2010, Experimental data processing Part 1, ProLingo, Vol. 6

Moldoveanu C., 2000, Geodezie. Notiuni de geodezie fizica si elipsoidala, pozitionare, MatrixRom Publishing House, Bucharest

Nistor Gh., 1998, Teoria prelucrarii masuratorilor geodezice, Rotaprint Publishing House, Iasi

Popia A., Popia R., 2005, Calculul si compensarea retelelor de trilateratie, UTM House, Chisinau

Voineagu V., Titan E., Ghita S., Boboc C., Todose D., 2007, Statistica. Baze teoretice si aplicatii, Economica Publishing House, Bucharest